Lawrence Livermore National Laboratory

Double-Sided Interferometer for Profiling Measurements Simultaneously Determining Thickness and Form

May 23, 2012

Michael J. Wilson

Overview

- Background
- Requirements
- Design Progression
 - Describe the design logic and the reason to change the design
- Results
- Summary

To be able to accurately analyze the experiment the absolute thickness must be known

NIF-0310-18630

Requirements

- Absolute thickness measurements and form
- Thickness uncertainty of 250 nm
- Uses commercially supported metrology tools
- Uses standard metrology tool interface to collect data
- Ability to use both a laser profilometer and white light interferometer
- Measure both transparent and opaque samples
- Completes a measurement in an hour or less

Design Progression

ATMM

- Confocal laser probe
- Able to measure thickness with an uncertainty of 510 nm

Z-axis stage Stepped thickness reference Non-contact displacement sensors Aluminum bridge High-accuracy X-Y air-bearing stage plate Granite table Sample holder

Double-Sided Prism Design

- White light interferometer or laser probe
- Able to measure thickness with an uncertainty of 1.2 μm

Double-Sided Corner Cube

- White light interferometer or laser probe
- Able to measure thickness with an uncertainty of 100 nm

Design Logic For Absolute Thickness Measuring Machine (ATMM)

- Measure both sides of a sample simultaneous with laser probes
- Be able to take in situ calibration measures for different step heights or thickness samples
- Scan to be able to get profile data

What did we learn from ATMM

- Confocal laser probes preferred to triangulation laser probes
- Confocal laser probes have trouble measuring transparent samples
- Confocal laser probes sensitive to ~3°
- Controls need to be commercially supported
- Compact foot print desired

Design Logic For Double Sided Interferometer Prism (DSI Prism)

- Measure both sides of a sample in one setup
- Use both white light interferometry (WLI) and laser probe
- Use commercially support equipment
- Be able to get thickness data and form data in one measurement with WLI
- Compact design

What did we learn from DSI Prism design

- Prism very difficult to manufacture
- Complex error map needed to compensate for Prism miss alignment

What did we learn from DSI Prism design (cont.)

- White light interferometer z stage does not repeat to starting position to better than 1µm
- Four mirrors depreciate the intensity of the light by 45%, making transparent surfaces not measureable
- Post processing of data is needed to get thickness measurements

Design Logic For Double Sided Interferometer Corner Cube (DSI Corner Cube)

- Measure both sides of a sample in one setup
- Use both white light interferometry (WLI) and laser probe
- Use commercially support equipment
- Be able to get thickness data and form data in one measurement with WLI
- Compact design

What did we learn from DSI Corner Cube

Fidicials

- Simpler is better
- Post process of data is necessary
- The reference is very important

Data For MatDS Ta EOSDrv NIF Experiment

Future Work

- Develop kinematic hardware for holding references and work pieces
- Develop algorithms to automate the process and analyze the data
- Design, develop, and test a system in a glove box

Acknowledgements

- Richard Seugling
- Pete Davis
- Walter Nederbragt
- Matthew Swisher
- Chuck Kumar
- Trevor Ness
- Ken Hienz
- Sean Felker
- David Swift
- Jon Eggert
- Raymond Smith

HED Manufacturing team – Alex Hamza, Don Bennett, Pete DuPuy, Craig Akaba, Mike McClure, Steve Strodecht, Rick Vargas, Gino Mercado, Kerry Bettencourt, Paul Mirkarimi, and Kerri Blobaum

References

- Nederbragt, W., et al 2005. Design And Use Of A High-Accuracy Non-Contact Absolute Thickness Measurement Machine ASPE 20th Annual Meeting (2005)
- Drabarek, P, et al 2009 Interferometrical System For High Precision Measurements of Flatness, Thickness and Parallelism of Mechanical Parts ASPE 24th Annual Meeting (2009)
- Kelly, D. 2004 Design and Qualification of an Absolute Thickness Measuring Machine. Master's thesis. Massachusetts Institute of Technology in Mechanical Engineering
- Ai, C and K. Smith. 1992. Accurate measurements of the dihedral angle of a corner cube. *Applied Optics*. 31:4:519-527
- Doiron, T. and J. Beers. *The Gauge Block Handbook*. Dimensional Metrology Group Precision Engineering Division National Institute of Standards and Technology
- Doiron, T. 2008. Gauge Blocks A Zombie Technology. *Journal of Research of the National Institute of Standards and Technology.* 113: 3:175-184

Thank You